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3.1 Introduction 

The Internet of Things (IoT) possesses the immense potential to revolutionize 
numerous industries and aspects of daily life by facilitating the seamless integration 
of the physical world with digital systems (Tataria et al. 2021). It allows for the 
creation of smart homes, smart cities, industrial automation, precision agriculture, 
healthcare monitoring, and an array of other innovative applications. To effectively 
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implement these intelligent applications, a substantial quantity of IoT devices is 
indispensable (Saad et al. 2019; Al-Fuqaha et al. 2015). According to recent 
statistics, the rapid growth of the IoT is expected to result in an astonishing 
number of 125 billion IoT devices by 2030 (SEMICONDUCTORDIGEST n.d.). 
Alongside this massive proliferation of devices, the amount of data generated by 
these IoT devices is predicted to be monumental. It is estimated that by 2025, 
the total data volume generated by connected IoT devices worldwide will reach 
an astounding 79.4 zettabytes (ZBs) (Statista n.d.). The exponential expansion of 
network size and data volume within the IoT systems presents an exceptional 
opportunity to harness the power of artificial intelligence (AI) algorithms. These 
algorithms have the capability to efficiently process and analyze immense data 
quantities, thereby extracting valuable insights and facilitating decision-making 
processes with remarkable efficacy. 

In the traditional approach, data gathered by IoT devices is transmitted to cloud 
servers or data centers, where it is uploaded and processed in a centralized manner. 
However, this approach is no longer sustainable due to several reasons (Ying et al. 
2023): Firstly, data owners are becoming increasingly concerned about privacy 
issues associated with transmitting their data to centralized servers. Secondly, the 
traditional approach introduces significant propagation delays, which are unac-
ceptable for applications requiring real-time decision-making. Lastly, transferring 
large volumes of data to the centralized server for processing puts a strain on the 
backbone network, impacting its performance and capacity. To address the privacy 
and latency issues associated with traditional IoT, mobile edge computing (MEC) 
(Abbas et al. 2017; Cao et al. 2019; Donta et al. 2023) emerged as a paradigm 
where data processing and analysis occur closer to the data source, reducing data 
transmission, latency, and reliance on centralized infrastructure. However, it may 
still involve transmitting raw data to centralized locations for model training, raising 
privacy concerns. 

Against the backdrop of increasingly stringent data privacy regulations, federated 
learning (FL) (McMahan et al. 2017a; Kairouz et al. 2021) has emerged as a 
promising solution to tackle privacy concerns in IoT environments. FL, as a privacy-
preserving distributed machine learning paradigm, facilitates collaborative and 
decentralized ML while ensuring that raw data remains within the client’s domain, 
thereby not being transmitted to a central server (Zeng et al. 2021). In FL, the 
learning process takes place locally on each client within the network, where each 
client trains its own local models utilizing its own data, while the central server 
exclusively aggregates and shares the new global model updates. This approach 
guarantees the preservation of data privacy since sensitive information remains 
on the clients and is not exposed to the central server or other clients in the FL 
network. Moreover, FL maintains data utility by aggregating model updates from 
each client, enabling the central server to create an updated global model that 
captures knowledge from diverse distributed data, resulting in improved accuracy 
and generalization capabilities. Specifically, the several benefits that FL offers for 
IoT as outlined below:
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• Enhanced Data Privacy: FL ensures data privacy and reduces the risk of 
data breaches or unauthorized access by keeping raw data on the clients and 
eliminating the need to transmit sensitive information to a central server, thereby 
preserving data privacy and enhancing security measures.

• Reduced Latency and Bandwidth Requirements: FL minimizes the need for 
frequent data transmission between clients and the central server by performing 
local model training on each client, resulting in reduced latency and bandwidth 
requirements. This makes FL highly suitable for real-time or latency-sensitive 
IoT applications, ensuring efficient and responsive data processing.

• Efficient Resource Utilization: FL optimizes resource utilization by leveraging 
the computational power of edge devices within the IoT network, distributing the 
learning process. This reduces the burden on the central server and makes FL 
well-suited for resource-constrained IoT devices, ensuring efficient utilization of 
limited resources.

• Robustness to Device Heterogeneity: FL is designed to handle the heterogene-
ity present in IoT networks, accommodating devices with diverse characteristics 
such as varying hardware configurations or data distributions. FL achieves this 
by allowing local model training on individual devices, enabling each device 
to contribute to the global model irrespective of its specific capabilities or data 
characteristics. This ensures effective utilization of the collective knowledge 
within the IoT network while accommodating device heterogeneity.

• Improved Scalability: FL facilitates large-scale collaboration across numerous 
IoT devices, enabling each device to actively participate in the training process 
and contribute its local model update to enhance the global model. The scalable 
approach efficiently utilizes the vast amount of distributed data available in 
IoT environments, resulting in improved model performance and leveraging the 
collective intelligence of the entire IoT network. 

Overall, FL provides significant benefits for IoT, including preserving data 
privacy, reducing latency, optimizing resource efficiency, handling device hetero-
geneity, and enabling scalability. These advantages make FL a valuable approach for 
effectively leveraging distributed IoT data while ensuring privacy and maximizing 
learning performance. In this work, we present state-of-the-art advancements in 
FL for IoT. The rest of this work is organized as follows. Section 3.2 provides 
an introduction to preliminary work on FL for IoT. Section 3.3 explores various 
applications of FL for IoT. Section 3.4 provides the current research challenges and 
future directions in the field of FL for IoT. Finally, Sect. 3.5 concludes the paper. 

3.2 Federated Learning and Internet of Things: 
Preliminaries 

In this section, we first present the fundamental knowledge of FL and IoT. Next, we 
briefly introduce the overview of FL for IoT.
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3.2.1 Federated Learning 

Recent advancements in AI and the proliferation of IoT devices have led to 
exponential growth in data. In addition, concerns over data privacy and security have 
also risen. In response to these concerns, FL provides a viable solution to address 
these challenges by facilitating collaborative ML without compromising individual 
privacy. FL leverages the distributed nature of data and allows local learning on 
IoT devices, promoting data privacy while facilitating collaborative intelligence. 
Here, we introduce the fundamental concept of FL and subsequently present 
several significant categories of FL specifically for IoT networks. Specifically, the 
architectural overview of FL for IoT is provided as shown in Fig. 3.1. 

3.2.1.1 Fundamental FL Concept 

The FL system for the IoT network consists of five distinct entities that collectively 
contribute to its operation and effectiveness: 

1. Admin: The administrator serves as the overseer of the FL system’s overall 
operation, including managing the coordination among the various entities 
involved, ensuring system stability and security, and addressing any technical 
issues or updates that may arise. 

2. Model Engineer: The model engineer is responsible for developing the ML 
model, defining the training protocol for the FL system, and executing model 
evaluation. 

3. Aggregation Server/Blockchain: The aggregation server or blockchain coordi-
nates the FL training process by collecting and aggregating the model updates 
from the participating clients. 

4. Clients: Clients represent the devices or organizations that contribute their local 
data and computational resources to the FL training process (Zeng et al. 2020). 

5. End users: End users refer to individuals or organizations that utilize the trained 
ML model to make predictions or decisions. 

3.2.1.2 The Typical Process of FL Training for IoT 

Let .K = {1, 2, . . . , K} represent the set of clients actively participating in the 
collaborative training of FL models, leveraging their IoT devices to perform IoT 
tasks. Each client .k ∈ K possesses a local dataset .Dk that may undergo changes 
over time. The size of the local dataset is denoted by .|Dk|. For local model training, 
each client can selectively choose a subset .�k ⊆ Dk from its local dataset, and the 
size of the chosen subset is indicated by .|�k|. Next, we present the typical process 
of FL training for IoT.



3 Federated Learning for Internet of Things 37

Privacy-Preserving 

R
efinem

ent 
D. Model Deployment 

Smart City Smart Transportation Smart Home Smart Intelligence 

B. Local Training 

C. Model Aggregation and Evaluation 

B1. Data Preparation 

... ... 

... ... 

B2. Training 

Admin 

Dataset PreparationModel DefinitionProblem Definition TrainingTT 
Initialization 

A. FL Initialization 

Centralized Decentralized 

Edge 
Server 

Cloud 
Server 

C1. Model Aggregation 

C2. Model Evaluation 

Privacy-Preserving 

Smart City Smart TransportationTT Smart Home Smart Intelligence 

B. Local TrainingTT 

C. Model Aggregation and Evaluation 

B1. Data Preparation 

Cilent 
Selection

Data FilteringClient 
Registration 

Data 
Collection 

Data 
Processing 

... ... 

... ... 

B2. TrainingTT 

Admin 

A. FL InitializationL 

Federated Learning Algorithms (FedAvg, FedPrAA ox, FedOPT...) 

Centralized Decentralized 

Edge 
Server 

Cloud 
Server 

C1. Model Aggregation 

C2. Model Evaluation 

Datasets Evaluations Benchmarks 

Model Engineer 

D
ata Source 

Trained M
odel 

Model Engineer 

Fig. 3.1 The architecture of federated learning for IoT 

Step 1: Client Selection. Client selection plays a crucial role in determining the 
participating clients in the training process, which influences the performance of 
the trained model. Let .K s denote the set of selected clients, and .|K s | represents 
the number of clients chosen for participation.
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Step 2: Download Global Model. During this step, the clients initiate the pro-
cess by downloading the global model that was aggregated by the central server 
in the previous round t . (In the first round, the global model is randomly 
initialized.) 

.wk
t = wt (3.1) 

where . wt represents the downloaded global model in round t . 
Step 3: Local Training. After downloading the global model, the clients under-

take local training based on their local datasets, utilizing the downloaded model 
as a new starting point: 

.wk
t+1 = wk

t − η�Lk
(
wk

t ; �k
)

. (3.2) 

where . η is the step size, .Lk(wk
t ; �k) is the local loss function of client k in the 

round t , and .wk
t+1 denotes the trained local model of client k in the round t . 

Step 4: Upload Local Model Updates. The trained local models are then sent 
back to the aggregation server or blockchain for aggregation. 

Step 5: Global Aggregation. The aggregation server or blockchain combines the 
model updates from participating clients using an appropriate algorithm, thereby 
creating a unified global model that represents the collective knowledge of all 
clients: 

.wt+1 =
∑

k∈Ks |�k|wk
t+1∑

k∈Ks |�k| (3.3) 

where .wt+1 denotes the aggregated global model in the round .t + 1. 
The training process in FL typically consists of multiple rounds, each consisting 
of T iterations, to achieve convergence, and the termination of the training 
process depends on the specific objectives and requirements related to accuracy 
and training time. The objective of FL is to obtain the optimal weights for the 
global model . w∗ by minimizing the global loss function .L(w) (McMahan et al. 
2017b): 

.L(w) =
∑

k∈N s |�k|Lk(w; �k)∑
k∈N s |�k| . (3.4) 

where .Lk(w; �k) represents the loss function for a subset . �k of client k when the 
global model’s weight is given to w. 

.w∗ = arg min
w

L(w). (3.5)
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3.2.1.3 The Architecture of Federated Learning for IoT Networks 

Figure 3.1 portrays a comprehensive and well-structured depiction of the archi-
tecture of FL for IoT networks. This architecture facilitates the integration of FL 
techniques into IoT systems, enabling collaborative and privacy-preserving ML 
across distributed IoT devices. The architecture comprises several key components, 
each playing a vital role in the FL process. 

FL Initialization: FL initialization refers to the process of setting up the initial 
conditions and parameters before commencing the FL process. This stage is 
crucial as it establishes the foundation for subsequent iterations of model 
training and aggregation in a FL system. The initialization process in FL 
typically involves the following key steps: Define the problem by identifying 
data sources, and target tasks, and specifying performance metrics for model 
evaluation (step 1). After problem definition, the model engineer designs a model 
architecture for FL, which includes selecting optimization algorithms, defining 
model parameters, and determining data partitioning among participating clients 
(step 2). Then, the dataset is prepared by the data owners, who are responsible 
for the collection or generation of the data specifically intended for training the 
model (step 3). Afterwards, the training process is initiated by the central server, 
which provides the participating clients with the initial model parameters, either 
through random initialization or by leveraging pre-training on a large dataset 
(step 4). 

Local Training: Local learning in FL refers to the process by which clients 
perform model training using their locally available data. Prior to local training, a 
crucial step is to perform data preparation, which encompasses client registration, 
client selection, data collection, data processing, and data filtering, ensuring 
the availability of diverse and relevant data that is appropriately formatted for 
subsequent local training in the FL process. Client registration refers to the initial 
step in FL where eligible clients or IoT devices voluntarily enroll themselves in 
the FL system, typically by registering with the central server or a designated 
entity (step 1). After that, client selection in FL is executed as a strategic process 
that involves carefully choosing a subset of clients from the registered pool for 
each iteration, considering criteria such as device capabilities, data quality, and 
diversity, to ensure their representative and effective participation (step 2). Next, 
the process of data collection gathers data from the selected clients, where each 
client contributes its locally stored or generated data (step 3). Subsequently, data 
processing involves the necessary preprocessing and transformation of collected 
data to prepare it for model training, aiming to enhance data quality and facilitate 
efficient learning (step 4). Last but not least, data filtering plays a critical role in 
data preparation by selectively removing or filtering out data samples or features 
based on predefined criteria, effectively eliminating outliers, noise, or irrelevant 
information that could potentially disrupt the training process or compromise 
privacy (step 5). After the completion of data preparation, each selected client 
independently trains its local model based on the data available locally.
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Model Aggregation and Evaluation: Following the completion of local training, 
the subsequent step in FL entails aggregating the local model updates to create 
a new global model. This aggregation process can be carried out using various 
approaches, including the use of a cloud server, an edge server, a combination 
of cloud server and edge server, and even leveraging blockchain technology 
(the details as introduced in Sect. 3.2.2). As a subsequent step, the aggregated 
global model is evaluated to assess its performance and generalization ability 
(Ying et al. 2023a). Evaluation metrics, such as accuracy, precision, and F1 
score, are commonly used to measure the model’s effectiveness in achieving 
the desired task objectives. Additionally, the evaluation phase also involves 
comparing the performance of the FL model with other benchmark models or 
existing approaches to validate its efficacy and identify areas for improvement. 
If the specific objectives and requirements concerning the performance (such as 
accuracy) are achieved, the training process could be terminated. 

Model Deployment: Upon completion of the training phase, the trained model 
can be deployed for making predictions on some IoT applications that perform 
FL model training or previously unseen IoT applications. However, in certain 
scenarios, it may be necessary to fine-tune the model using new data in order to 
adapt to evolving conditions or enhance its performance. 

3.2.2 Types of Federated Learning for IoT 

In this subsection, we present the classification of FL approaches based on their 
networking structure, centralization levels, and participating clients. By compre-
hending these categories, informed decisions can be made when implementing FL 
in IoT applications. 

3.2.2.1 Types of FL for IoT Based on Networking Structure 

From a networking structure perspective, FL can be categorized into two main 
classes, including centralized FL and decentralized FL, as illustrated in Fig. 3.2. 

Centralized FL refers to the FL setting where a central server acts as the main 
coordinator during the learning process. In this approach, the training data remains 
distributed across multiple clients, but the coordination and aggregation of model 
updates are performed by the central server. The FL framework entails the central 
server distributing the global model to the clients, who subsequently perform local 
training using their own local datasets. After training, the clients transmit their 
locally updated model to the central server. The central server then aggregates 
these model updates, resulting in an improved global model. This iterative process 
of model distribution, local training, and aggregation is repeated across multiple 
rounds to enhance the performance of the global model.
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Fig. 3.2 Types of federated learning models for IoT networks 

Decentralized FL, on the other hand, involves a more distributed and peer-to-
peer approach. In this class of FL, there is no central server that coordinates the 
learning process. Instead, the participating clients form a network and collaborate 
directly with each other to train a shared global model. The clients exchange 
model updates with their neighboring devices and use those updates to refine their 
own local models. The collaboration and communication between the clients can 
occur in various ways, such as through P2P communication (blockchain) and direct 
device-to-device communication (Bluetooth, Wi-Fi Direct) in the network. The 
decentralized nature of this approach provides benefits such as improved privacy, 
reduced reliance on a single point of failure, and potential scalability advantages. 

Both centralized FL and decentralized FL offer distinct advantages and con-
siderations. The selection between these two classes hinges upon several factors, 
including the nature of the data, privacy requirements, communication capabilities, 
computational resources, and specific use case requirements. These factors play a 
pivotal role in determining the most suitable approach for a given scenario. 

3.2.2.2 Types of Centralized Federated Learning 

Centralized federated learning is a widely adopted architecture in IoT systems, 
encompassing various implementations such as cloud-based FL, edge-based FL, and 
cloud-edge-based FL. These architectures leverage the centralized coordination and 
management provided by a central server while incorporating different computing 
and communication trade-offs to suit specific IoT scenarios.



42 Y. Li et al.

... ... 

... 
... 

... 

... 

... 

Backbone 
Network 

.. 
. 

.. 
. 

Backbone 
Network 

Cloud-based FL Edge-based FL Cloud-Edge based FL 

Cloud Server Edge Server 

Edge 
Server1 

Edge 
Server N... 

.. .. 

Cloud Server 

ClientsClientsClients 

Fig. 3.3 The overview of federated learning for centralized IoT networks 

In cloud-based FL, a large number of clients, potentially reaching millions 
(Bonawitz et al. 2019), contribute large datasets required for DL, as depicted on the 
left side in Fig. 3.3. However, communication with cloud servers is slow and unpre-
dictable, resulting in inefficient training processes due to network congestion. The 
communication efficiency and convergence rate in Federated Averaging (FedAVG) 
involve a trade-off where more local computation is performed at the cost of reduced 
communication. Despite this, cloud-based FL benefits from the ability to access vast 
training samples on cloud servers. 

On the other hand, edge-based FL has emerged as a response to the increasing 
demand for decentralized and real-time ML capabilities in IoT and edge computing 
environments, as depicted in the middle of Fig. 3.3. In edge-based FL, the server 
is placed closer to the edge, such as base stations. This architecture reduces 
computation latency as it aligns with the communication latency to the edge 
parameter server. While edge-based FL offers the advantage of faster local model 
updates, it has limitations in terms of the number of clients’ access to each server, 
resulting in performance losses. 

To address these challenges, a hierarchical FL system, called cloud-edge-based 
hierarchical FL (Liu et al. 2020; Wu et al.  2020), has been proposed, as depicted 
on the right side in Fig. 3.3. The architecture integrates the strengths of both cloud-
based and edge-based FL approaches. It effectively harnesses the extensive training 
data available on cloud servers while enabling rapid model updates through local 
clients deployed on edge servers. Compared to cloud-based FL, the cloud-edge-
based hierarchical FL significantly reduces expensive communication with the cloud 
servers. This reduction is accomplished through the integration of efficient client 
updates by edge servers, resulting in noteworthy decreases in both runtime and the 
number of local iterations required. Conversely, the cloud-edge-based hierarchical 
FL framework surpasses edge-based FL in terms of model training efficacy due to 
the cloud servers’ access to more extensive data. 

Centralized FL architectures, including cloud-based FL, edge-based FL, and 
cloud-edge-based FL, offer distinct advantages and trade-offs in IoT systems.
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Fig. 3.4 Types of federated learning for IoT networks based on participating clients 

Cloud-based FL excels in scalability and model performance but raises concerns 
regarding privacy, latency, and communication. In contrast, edge-based FL priori-
tizes privacy preservation, low latency, and efficient bandwidth utilization, but faces 
challenges related to resource constraints and hardware heterogeneity. Cloud-edge-
based FL strikes a balance between privacy, latency, communication, and resource 
utilization, yet necessitates careful orchestration and deployment considerations. 
By comprehending the unique characteristics of each architecture and considering 
specific requirements, it helps to make well-informed decisions to select the most 
suitable FL approach for their IoT systems. 

3.2.2.3 Types of Federated Learning for IoT Based on Participating 
Clients 

According to the setting based on participating clients, FL for IoT can be classified 
into two types, cross-device FL and cross-silo FL, as illustrated in Fig. 3.4. 

Cross-device FL refers to the scenario where the distributed devices participating 
in the FL process belong to different individuals or organizations, where the number 
of clients is big and the data size provided by each client is small (Rehman et al. 
2021; Yang et al. 2022). These devices can be personal smartphones, tablets, or 
other IoT devices owned by different users. Each device holds its own local data and 
contributes to the FL process by performing local model training using its own data. 
The model updates are then transferred and aggregated across the devices to obtain a
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global model. Cross-device FL enables collaborative learning while preserving data 
privacy since the data remains on the devices and is not centralized. 

Unlike cross-device FL, cross-silo FL involves the collaboration of multiple 
organizations that possess separate data silos, typically with a smaller number of 
organizations but with larger data volumes and many IoT devices within each 
organization. Each data silo represents a distinct dataset owned by a different 
organization (Li et al. 2023), such as different hospitals, cities, or industries. In this 
scenario, the organizations collaborate to train a shared global model by exchanging 
model updates while keeping their data locally. The data from each silo is not 
shared with other organizations, maintaining data privacy and security. Cross-silo 
FL enables the collaborative training of a more comprehensive model by leveraging 
diverse datasets from multiple organizations without directly sharing the raw data. 

The classification of FL into cross-device and cross-silo types provides a clear 
distinction between scenarios involving individual devices owned by different users 
and scenarios involving separate organizations with their own data silos. The 
selection between these types depends on specific contextual factors such as data 
ownership, collaboration requirements, privacy considerations, and the nature of the 
FL for IoT applications. 

3.2.3 FL Framework for IoT 

This subsection provides a comprehensive overview of different frameworks that 
have been developed specifically for the implementation of FL for IoT networks: 

(1) FedML: FedML is an open-source research framework that helps in developing 
and implementing FL algorithms (He et al. 2020). It consists of two main 
components: FedML-core and FedML-API. FedML-core is the low-level API 
component responsible for distributed communication and model training. 
FedML-API, built upon FedML-core, is the high-level API component that 
simplifies the implementation of distributed algorithms in FL. FedML is distin-
guished by its ability to facilitate FL on real-world hardware platforms. Notably, 
FedML incorporates two on-device FL testbeds, namely, FedML-Mobile and 
FedML-IoT, both of which are constructed using actual hardware platforms. 
This feature strengthens FedML’s practicality and enables researchers to con-
duct FL experiments in authentic mobile and IoT environments. 

(2) Flower: Flower is an open-source Python library developed by IBM Research 
that simplifies the implementation of FL systems by providing a high-level 
interface and abstraction layer (Beutel et al. 2020). It supports popular ML 
frameworks like PyTorch and TensorFlow, handling model update aggregation, 
client sampling, communication protocols, and FL system evaluation. Flower’s 
architecture allows for experiments at global and local levels, separating client 
selection, parameter aggregation, and evaluation through strategy abstraction. It 
accommodates heterogeneous client platforms and implementations, manages
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complexities like connection handling, and offers a simplified environment for 
researchers. 

(3) TensorFlow-Federated (TFF): TFF is an open-source framework developed 
by Google that extends TensorFlow for FL (Blog n.d.). It offers tools and 
libraries for building and deploying ML models in federated settings, incor-
porating federated computations and aggregations. TFF consists of two layers: 
FL, providing high-level interfaces for seamless integration of existing ML 
models, and FC, offering lower-level interfaces for custom-federated algorithms 
using TensorFlow and distributed communication operators. This modular 
approach promotes flexibility and adaptability, empowering users to leverage 
FL according to their specific needs and research goals. 

(4) PySyft: PySyft is an open-source Python library that aims to provide privacy-
preserving ML and secure multiparty computation techniques (Ryffel et al. 
2018). It integrates with popular DL frameworks such as PyTorch and Ten-
sorFlow, allowing users to perform privacy-enhancing tasks such as FL, 
encrypted computation, and differential privacy. PySyft leverages secure multi-
party computation protocols, homomorphic encryption, and other cryptographic 
techniques to ensure the confidentiality and privacy of data in distributed 
learning scenarios. It offers an essential toolkit for building privacy-enhancing 
applications and fostering trust in collaborative ML environments. 

(5) LEAF: LEAF, which stands for Low-resource Environments for Aggregation 
and FL, is a research framework and benchmark suite designed for FL 
under resource-constrained environments (Caldas et al. 2018). LEAF offers a 
curated collection of datasets, benchmarks, and evaluation metrics explicitly 
designed to evaluate the efficacy of FL algorithms in scenarios characterized 
by limited computational resources, constrained bandwidth, or energy con-
straints. By providing a standardized platform, LEAF facilitates benchmarking 
and comparative analysis of diverse algorithms and methodologies, thereby 
fostering advancements in FL techniques for resource-constrained settings. This 
framework plays a pivotal role in promoting research and innovation in privacy-
preserving machine learning within challenging resource limitations. 

(6) FATE: FATE, short for Federated AI Technology Enabler, is an open-source 
FL platform developed by WeBank’s AI department (FedAI n.d.). FATE is a 
framework that aims to address the challenges of privacy, security, and trust in 
FL, providing a secure and reliable environment for FL system development. 
By offering a comprehensive suite of tools and components, including FL algo-
rithms, distributed computing protocols, secure computation mechanisms, and 
privacy protection techniques, FATE enables the development and deployment 
of large-scale FL systems across diverse domains such as finance, healthcare, 
and smart cities. FATE plays a significant role in advancing FL research and 
innovation, contributing to the establishment of robust and privacy-preserving 
FL practices in various academic and industrial contexts. 

(7) Paddle FL: Paddle FL is a federated learning framework developed by 
PaddlePaddle, an open-source deep learning platform (Ma et al. 2019). It is 
a comprehensive framework that facilitates FL using PaddlePaddle. It supports
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various FL scenarios and integrates with PaddlePaddle’s distributed computing 
capabilities to provide efficient strategies for model update aggregation, com-
munication, and synchronization. With flexible options for model architectures, 
optimization algorithms, and customization, Paddle FL enables developers to 
create tailored FL systems. It focuses on scalability, efficiency, and privacy 
preservation, allowing for the training of large-scale models on distributed data 
sources while ensuring data security. 

3.3 Federated Learning for IoT Applications 

This section offers a comprehensive discussion on the integration of FL into 
various essential IoT applications. These applications encompass smart healthcare, 
vehicular IoT, smart cities, smart industries, and cybersecurity. 

3.3.1 FL for Smart Healthcare 

The IoT revolution has demonstrated significant potential for numerous healthcare 
applications, leveraging the vast amount of medical data collected through IoT 
devices. However, the increasing demands for privacy and security of healthcare 
data have resulted in each IoT device becoming an isolated data island. To tackle 
this challenge, the emergence of FL has introduced new possibilities for healthcare 
applications (Yuan et al. 2020; Chen et al. 2020; He et al. 2023b). FL enables 
collaborative and privacy-preserving machine learning, with immense potential 
to transform the landscape of smart healthcare. It empowers healthcare service 
providers to collectively leverage their data and knowledge, thereby enhancing the 
performance of diagnoses (Elayan et al. 2021) while adhering to stringent data 
privacy regulations and ethical considerations (Singh et al. 2022). 

3.3.2 FL for Vehicular IoT 

Vehicular IoT systems, encompassing cooperative autonomous driving and intelli-
gent transport systems (ITS), are particularly susceptible to privacy breaches due to 
the abundance of devices and privacy-sensitive data. FL holds significant promise as 
an effective approach to address privacy concerns and optimize resource utilization 
in future vehicular IoT systems (Du et al. 2020). By preserving data privacy, 
fostering collaboration, and leveraging localized computing capabilities, FL can 
enable the realization of efficient and privacy-preserving cooperative autonomous
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driving (Li et al. 2021; Nguyen et al. 2022) and intelligent transport networks 
(Manias & Shami 2021; Zhao et al. 2022). However, further research and devel-
opment efforts are necessary to tailor FL algorithms to the specific requirements of 
vehicular IoT systems and overcome challenges related to scalability, heterogeneity, 
and trustworthiness. By addressing these challenges, FL can pave the way for the 
widespread deployment of secure and privacy-preserving vehicular IoT systems, 
contributing to safer and more efficient transportation networks. 

3.3.3 FL for Smart City 

Smart cities are rapidly evolving ecosystems that leverage various IoT technologies 
to enhance urban services and infrastructure. However, the massive amount of data 
collected by IoT devices raises significant concerns regarding privacy and resource 
efficiency. FL has emerged as a promising approach to address privacy concerns 
and optimize resource utilization in smart city environments, offering significant 
potential for enhancing the efficiency and privacy of smart city applications (Jiang 
et al. 2020). By enabling distributed model training and preserving data privacy, FL 
can facilitate the development of more efficient and privacy-preserving smart city 
systems. The adoption of FL in smart city deployments requires further research 
and development to address challenges related to heterogeneity, model consistency, 
network dynamics, and trustworthiness. By overcoming these challenges, FL 
can contribute to the realization of intelligent and privacy-conscious smart city 
ecosystems, promoting sustainable urban development and improving the quality 
of life for citizens (Imteaj & Amini 2019; Qolomany et al. 2020; He et al. 2023a). 

3.3.4 FL for Smart Industry 

Smart industry, powered by industrial Internet of Things (IIoT) technologies, 
poses unique challenges concerning privacy and resource efficiency. FL presents 
a promising approach to address these challenges by offering privacy preservation 
and resource optimization in smart industry applications (Pham et al. 2021), enhanc-
ing privacy preservation while improving resource efficiency in industrial IoT 
deployments. However, additional research and development efforts are necessary 
to overcome challenges related to network heterogeneity, model synchronization, 
and security. Addressing these challenges would enable FL to unlock the full 
potential of smart industry, fostering efficient and privacy-conscious industrial 
processes, and facilitating data-driven decision-making for enhanced productivity 
and competitiveness (Li et al. 2022; Yang et al. 2021; Qolomany et al. 2020; Ma  
et al. 2021).
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3.3.5 FL for Cybersecurity 

Cybersecurity has become a critical issue in the digital age, requiring effective 
solutions to detect threats and protect privacy. With the continuous expansion of 
IoT services and applications, the decentralization paradigm has attracted a lot of 
attention from government, academia, and industry in cybersecurity and ML for IoT. 
FL has gained prominence as a promising approach for addressing cybersecurity 
challenges, offering innovative solutions to enhance the security and efficiency of 
IoT systems. The concept of federated cybersecurity (FC) (Ghimire & Rawat 2022) 
is considered revolutionary, as it paves the way for a more secure and efficient future 
in IoT environments by effectively detecting security threats, improving accuracy, 
and enabling real-time response in network systems (Belenguer et al. 2022; Attota 
et al. 2021; Issa et al. 2023; Liu et al. 2020). Future advancements in FL algorithms 
and privacy-enhancing techniques will further strengthen the effectiveness and 
scalability of FL for cybersecurity applications, contributing to a more secure digital 
landscape. 

3.4 Research Challenges and Directions 

Despite the aforementioned benefits, the implementation of FL for IoT still faces 
numerous challenges, as outlined below. 

3.4.1 Heterogeneity of IoT Devices 

The heterogeneity observed among IoT devices poses significant challenges to 
the implementation of FL in IoT applications. This heterogeneity encompasses 
both data heterogeneity and device heterogeneity. To address these challenges, 
it is essential to develop adaptive FL algorithms capable of accommodating the 
diverse capabilities of IoT devices. Additionally, FL algorithms need to consider 
the limitations of resource-constrained environments and limited power sources. To 
mitigate these constraints, it is crucial to incorporate energy-efficient strategies and 
optimization techniques that minimize computational and communication overhead. 
Moreover, the dynamic nature of IoT networks introduces further challenges related 
to device mobility and connectivity fluctuations. FL algorithms should account for 
device mobility, enabling seamless model synchronization and training continuity 
even during device joins or departures, as well as intermittent connectivity. To 
overcome the heterogeneity of IoT devices, future research should prioritize the 
development of adaptive and robust FL algorithms (Sun et al. 2020) capable of 
effectively handling varying capabilities (Li et al. 2022; Wang et al. 2021; Pang
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et al. 2020; Chen et al. 2021), resource constraints (Imteaj et al. 2022; Savazzi et al. 
2020), and dynamic network conditions (Wang et al. 2021). 

3.4.2 Limited Computational Resources 

The implementation of FL for IoT applications encounters challenges arising from 
the limited computational resources available on IoT devices. These devices possess 
constraints in processing power, memory, and energy, which impede the execution 
of complex ML algorithms necessary for FL. To address this issue, it is crucial 
to develop resource-efficient FL algorithms that employ techniques such as model 
compression, lightweight architectures, and efficient communication protocols. 
These techniques aim to minimize the computational overhead associated with FL 
operations. The heterogeneity of computational resources among devices further 
complicates the design of FL algorithms, necessitating the adoption of adaptive 
approaches capable of adjusting computational requirements based on device 
capabilities and availability. Moreover, ensuring energy efficiency is of paramount 
importance, and FL algorithms should incorporate strategies such as reducing 
device participation frequency and duration, employing compressed model updates, 
and leveraging local computation to minimize energy consumption. Therefore, 
future research should focus on the development of resource-constrained algorithms 
(Imteaj et al. 2021) that achieve a balance between computational efficiency, model 
accuracy, and energy consumption, while also exploring techniques for adaptive 
resource allocation (Nguyen et al. 2020), and energy optimization (Yu et al. 2021) to  
facilitate the effective deployment of FL in resource-constrained IoT environments. 

3.4.3 Communication and Bandwidth Limitations 

The successful implementation of FL for IoT applications faces significant chal-
lenges attributed to limitations in communication and bandwidth (Brown et al. 
2020). IoT devices operate within resource-constrained environments characterized 
by restricted network bandwidth, intermittent connectivity, and diverse communica-
tion protocols. To address these challenges, communication-efficient FL algorithms 
can minimize data transmission and reduce reliance on continuous connectivity 
through techniques such as model compression (Itahara et al. 2020; Bernstein 
et al. 2018), client selection (McMahan et al. 2017c; Li et al.  2021), and sparse 
updates (Thonglek et al. 2022). Additionally, adaptive strategies for communication 
scheduling can optimize bandwidth utilization (Hönig et al. 2022; Diao et al. 2020). 
These approaches enable communication-efficient FL algorithms that minimize data 
transmission, reduce reliance on continuous connectivity, and optimize bandwidth 
utilization. By leveraging these techniques, FL can be effectively applied to
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IoT environments, unlocking the potential for distributed machine learning while 
accommodating the unique constraints of resource-constrained IoT devices. 

3.4.4 Privacy and Security Concerns 

Privacy and security concerns pose significant challenges to the implementation of 
FL for IoT applications (Briggs et al. 2021). FL involves the sharing and aggregation 
of sensitive data from multiple devices, raising concerns about data privacy and 
potential security breaches. To address these concerns, robust privacy-preserving 
techniques should be developed, such as differential privacy (Zhao et al. 2020; 
Zhou et al. 2020) and blinding technique (Fu et al. 2020; Zhou et al. 2020). These 
techniques ensure that individual device data remains private and secure during 
the FL process. In addition, securing FL against potential attacks and malicious 
participants is crucial. FL algorithms should incorporate mechanisms for detecting 
and mitigating adversarial behavior, such as anomaly detection (Liu et al. 2020; Cui  
et al. 2021). Furthermore, implementing robust authentication and access control 
mechanisms prevents unauthorized devices from participating in the FL process (Li 
et al. 2022). Compliance with data privacy regulations and ethical considerations is 
essential in FL for IoT. Adhering to regulatory frameworks like the General Data 
Protection Regulation (GDPR) and integrating privacy-by-design principles ensures 
transparent and privacy-preserving FL processes. 

3.4.5 Scalability and Management 

The successful implementation of FL for IoT applications is impeded by scalability 
and management concerns. Scalability encompasses the FL system’s ability to 
effectively handle a large number of participating clients and increasing data 
volumes. As the IoT system expands with a growing number of clients and 
data sources, FL algorithms need to efficiently manage the aggregation of model 
updates and ensure timely convergence. Thus, the development of scalable FL 
architectures and distributed optimization techniques become crucial to accommo-
date the growing scale of IoT deployments. Furthermore, effective management of 
FL systems is paramount for their seamless operation. This entails various tasks 
such as device registration, model synchronization, performance monitoring, and 
fault tolerance. The development of comprehensive management frameworks and 
protocols is necessary to ensure the reliability, availability, and performance of FL 
systems within dynamic IoT environments. To address the challenges associated 
with scalability and management in FL for IoT, future research should prioritize 
the development of scalable and efficient algorithms capable of handling large-
scale deployments and increasing data volumes (Imteaj et al. 2022; Savazzi et al.
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2020; Rahman et al. 2020). Additionally, robust management frameworks need to 
be designed to facilitate seamless client management, model synchronization, and 
system monitoring, thus contributing to the successful deployment and operation of 
FL in IoT environments (Li et al. 2022; Rey et al. 2022; Khan et al. 2020; Cui et al. 
2021). 

3.4.6 Federated Domain Generalization 

Federated domain generalization (FDG) is a critical consideration in implementing 
FL for IoT applications as it pertains to the ability of FL models to effectively 
generalize across diverse data domains collected from various clients or locations 
within IoT environments (Ying et al. 2023b). Domain shift can lead to performance 
degradation when models are deployed in new or unseen domains. Addressing FDG 
necessitates the development of robust techniques like domain adaptation (Wu & 
Gong 2021; Zhang et al. 2023), transfer learning (Shenaj et al. 2023; Zhang & 
Li 2021), and meta-learning (Chen et al. 2021; Lin et al. 2020), which aim to 
enhance the generalization capabilities of FL models across diverse domains by 
leveraging knowledge from multiple domains and incorporating domain-awareness 
mechanisms. Addressing data distribution heterogeneity in FL is essential to prevent 
biased models that excel on certain devices but underperform on others, stemming 
from variations in data distributions. Techniques like data augmentation (Duan et al. 
2019; Yang & Soatto 2020) and adaptive aggregation (Yang et al. 2022; Shenaj 
et al. 2023) can be employed to mitigate distributional differences and improve 
the generalization performance of FL models across devices. Future research 
should prioritize the development of techniques and algorithms that effectively 
address domain shifts and data distribution heterogeneity in order to enhance 
the generalization capabilities of FL models, ensuring robust performance across 
diverse domains and IoT devices. 

3.5 Conclusion 

FL is a significant research area within the IoT environment. This work provides 
a comprehensive introduction to the field of FL for IoT, serving as a valuable 
resource for researchers seeking in-depth insights into FL in the IoT environment. 
By covering the theoretical foundations of FL, the architecture of FL for IoT, the 
different types of FL for IoT, FL frameworks tailored for IoT, diverse FL for IoT 
applications, and future research challenges and directions pertaining to FL for IoT, 
it provides a comprehensive view of the field. This work offered herein aims to offer 
valuable insights to researchers and inspire further research for novel advancements 
in privacy-preserving FL techniques for IoT.
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